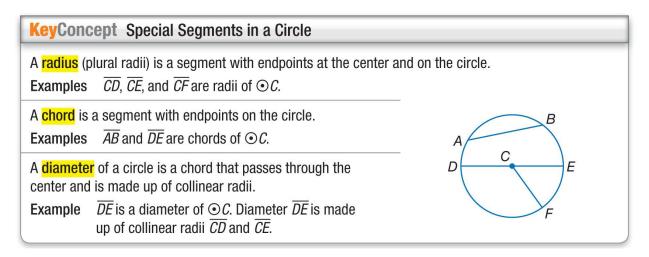
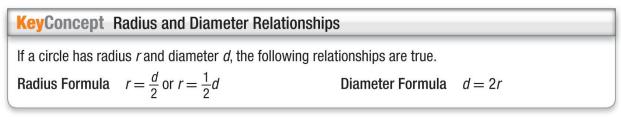
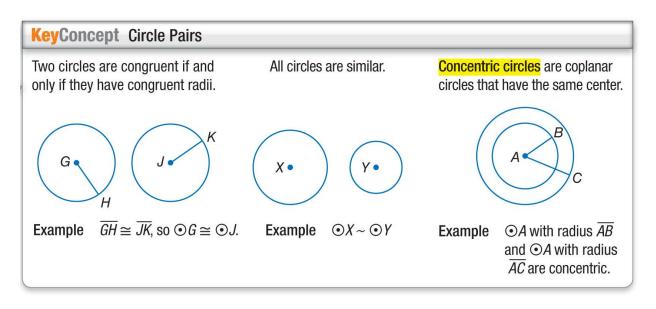
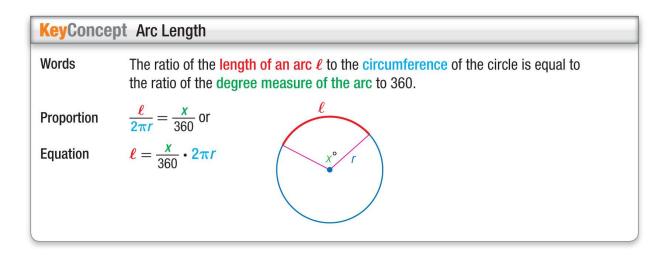

Activity 32 – Key Concepts




KeyConcept Area of a Sector


The ratio of the **area** *A* of a sector to the **area of the whole circle**, πr^2 , is equal to the ratio of the **degree measure of the intercepted arc** *x* to 360.



Sevence Circumference		
Words	If a circle has diameter <i>d</i> or radius <i>r</i> , the circumference <i>C</i> equals the diameter times pi or twice the radius times pi.	
Symbols	$C = \pi d \text{ or } C = 2\pi r$	

KeyConcept Sum of Central Angles		
Words	The sum of the measures of the central angles of a circle with no interior points in common is 360.	
Example	$m \angle 1 + m \angle 2 + m \angle 3 = 360$	3 2

KeyConcept Arcs and Arc Measure					
Arc	Measure				
A <mark>minor arc</mark> is the shortest arc connecting two endpoints on a circle.	The measure of a minor arc is less than 180 and equal to the measure of its related central angle. $\widehat{mAB} = m \angle ACB = x$	A x° B C			
A <mark>major arc</mark> is the longest arc connecting two endpoints on a circle.	The measure of a major arc is greater than 180, and equal to 360 minus the measure of the minor arc with the same endpoints. $\widehat{mADB} = 360 - \widehat{mAB} = 360 - x$				
A <mark>semicircle</mark> is an arc with endpoints that lie on a diameter.	The measure of a semicircle is 180. $\widehat{mADB} = 180$	ACCB			

Theorem 10.1		
Words	In the same circle or in congruent circles, two minor arcs are congruent if and only if their central angles are congruent.	FG
Example	If $\angle 1 \cong \angle 2$, then $\widehat{FG} \cong \widehat{HJ}$. If $\widehat{FG} \cong \widehat{HJ}$, then $\angle 1 \cong \angle 2$.	L 2 J

Postulate 10.1 Arc Addition Postulate			
Words	The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.	Y Y	
Example	$m\widehat{XYZ} = m\widehat{XY} + m\widehat{YZ}$	x	